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Abstract

The Fast Marching Method (FMM) is widely used
to solve static Hamilton-Jacobi equations (Eikonal
equations), presented in many applications like
robotics, medical scans, optimal design, and
geophysics exemplified by Kirchhoff migration
and traveltime tomography. This abstract introduces
the reader to the single-pass methods, showing the 2D
FMM implementation and its High Accuracy version
HAFMM. It is a good start point to understand the
method’s limitations, for further developments in
traveltime precision and high dimension extension.

Introduction

The high frequency approach of the wave equation plays
an important role in geophysics, in the sense of simplifying
wave phenomena in terms of the direct arrival events, with
that, it is possible to build the time boundaries for each
geophysical experiment (traveltime maps). Ray tracing
methods have a high degree of travetime accuracy along
of rays paths, but could have interpolation problems if the
media is very complex, mainly because this kind of media
tend to diverge the rays from each other, causing shadow
and caustics zones (Cerveny, 2001). A finite-difference
scheme was proposed by Vidale (1988) to overcome the
ray-tracing issues, however, Vidale’s solution may violate
the causality condition in moderate to large impedance
contrasts (Qin et al., 1992). Shortest path ray tracing (SPR)
is a grid based method to calculate the shortest distances
of networks (Moser, 1991). It is specified a grid of nodes
inside of velocity model and the minimum traveltime need
to be found only through the nodes connections. SPR is
usually solved by Dijkstra-like algorithms.

The Fast Marching Method (FMM) is one the most common
eikonal solvers. It was developed by Sethian (1996) in
a similar solving process of Dijkstra’s method. Dijkstra’s
method aims to compute the shortest distance path on a
network, but has the limitation to follow the distance in the
connection paths. No matter how refined the model for
the eikonal problem, Dijkstra’s method will always present
staircase patterns on it (Tsitsiklis, 1995). In order to find
a properly a continuous solution, Sethian (1996) used
the upwind finite-difference to approximate the gradient
operator in the eikonal equation, at the same time retain
the one-pass idea of Dijkstra’s algorithm.

The main goal of this work is to introduce the reader to the

single-pass method as FMM. We start contextualizing the
eikonal approach coming from 2D isotropic acoustic wave
equation with constant density, then we introduce upwind
finite-difference schemes, as an approach for the gradient
operator. We detail how FMM ensures the causality during
wave propagation using upwind finite-difference, and a
heap data structure to order the grid points update. We
show the method limitations and how would overcome
these issues with the high accuracy version of FMM.
Finally, we have included the Fortran 90 code as a
numerical receipt.

Method
Isotropic 2D eikonal equation

The eikonal equation can be obtained directly from the
acoustic wave equation with constant density in the
frequency domain,

V2U (x, 0) + 0*s* (x)U(x, 0) =0, (1)

where s(x) is the slowness field, U(x,®) is the pressure
field at the position x = (z,x) and w is the angular frequency
component.

For instance assuming an impulse wavefield u(x,z) =
A(x)d [t —1(x)], in a non-dispersive medium, written in
frequency domain as

U(x,w) = A(x)ell@T™)] @)

where the constant time surface ¢ = 7(x) means the
wavefront, we can substitute 2 in 1 to get the following
expression:

[a)zA(s2 —V1.V1)+i0(AV>T+2VA- V1) +V2A] 0% = .
3)
For equation 3 to be valid, each o coefficient must be

independently null. Therefore, we have three differential
equations:

VA = 0, (4)
AV?T4+2VA-VT = 0, (5)
ViV = s (6)

Equation 4 ensures the amplitude decays up to the
values of boundary conditions. Equation 5 is known as
the transport equation and describes the dynamics of
amplitude decay, and 6 is known as the eikonal equation
which describes the kinematics of the wavefield.
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Fast Marching Method

The Fast Marching Method (FMM) is a technique for
modeling the evolution of closed surfaces such as
wavefronts. The result is a temporal distance map,
very useful in fluid simulation, robotics, visual medical
computing and in geophysics to determine the traveltime
of head waves (Gémez et al., 2019).

The method is based on a data structure to store and
sequence the updating of nodes (heap data structure),
and on the upwind finite-difference scheme to ensure the
causality of wavefront evolution.

The upwind scheme for the eikonal equation 6 is given by

max (sz’l,'7 fD“’L',O)z -+ max (Df"(’l,'7 fD”‘L',O)Z =52, (7)

where

DYt = p, (T i, — Tit1i)
Dt = pe(Tii—Tit1), (8)

are the finite-difference scheme for forward (+) or
backward (—) derivatives, p, = F1/A; and p, = F1/A, store
the finite-difference coefficient and the grid spacing A;, A,
(Figure 1).

Substituting 8 in 7, aiming to take the minimum neighbor
grid point to give the maximum derivative, and defining the
vertical and horizontal neighboring grid point to be chosen
as

T, = min(T 41, Ti—1)
Ty o= min(T,; 11,Ti—1)- 9)

We can rewrite equation 7 in the form

max [p; (1 —5,),01% + max [ps (1~ 7,),07 =5 (10)
witht=1 ;.

Once the slowness is always positive (s > 0), T must be
greater than 1, and 13, then it is safe to simplify equation
10 to

2 2_ 2
[P (7= )]+ [px (T — )] =5~ (11)
Ti,—1,i,
Tiuiz
Ti,ig—1 Ti,ig+1
Ti,+1,i,

Figure 1: Updating grid point.

The eikonal equation in 11 has a quadratic form at? + bt +
¢ = 0 with coefficients

= pi+p}
_ 2 2
b - *2(171 Tv+prh)
¢ = pin+pin—s (12)

The large solution is the one we are looking for (equation
7), which means

N
o —-b+Vb —4ac. (13)
2a
It is known as two-side update scheme since 7, and 1,
is taking into account. This quadratic form is only valid if
7% > min(1,, 7). Some of the surrounding grid points may
have infinity values (the points where the wavefront has
not reached yet). In this situation, the causality condition
(b? > 4ac) fails, and becomes necessary to use the one-
side update scheme, where equation 11 is solved for each
direction independently

T = rv+i, (14)
‘Pz‘

o= g (15)
|Px|

The final solution is the minimum value between two-side
and one-side update schemes

7 = min(7%, 7%, 7). (16)

High Accuracy Fast Marching Method

It is easy to see that FMM has low accuracy. Figure 2
illustrates the problem when compared to the exact solution
of the distance map

2(z) = /(- 22+ (- )2, (17)

where (zs,x;) means the source position, 7(zs,xs) =0, A, =
A, = 1Im and constant slowness s = 1 s/m.

The calculated value (in red) represents an error of 20%
more than the exact solution. This is a limitation of
discretization in an attempt to capture the exact wavefront
curvature. It is possible to mitigate this problem by
increasing the accuracy of the finite-difference operator. A
High Accuracy version of FMM (HAFMM) changes only in
how to choose 1,, 1, and p;, p, to select the first or second
order approach in finite-difference operators.

The second order of the finite-difference approach is
represented by

Déczf = Dz (Tiz,ix_fv)v (18)
Dyt = pe(tii—w), (19)
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Figure 2: FMM curvature issue.

where
1
o= 3 (4T 11, — Tiansi) s (20)
1
To= 3 (4T, 01— Tii42) s (21)
3
Pz = :FZTAZ’ (22)
_ 3 (23)
px = F 2A, .

The criteria for choosing between forward or backward
derivative is initially the same for the first order (equation
9). Once decided we need to check if there are finite values
in the next two grid points to obey the causality condition,
Ti+1 > Ti+2, 10 proceed with second order. If this is not true,
we keep updating using the first order.

The HAFMM method will not be used in the first iterations
because there are not enough points for the calculation.
However, the error accumulation tends to decrease as
its wavefront propagates. Figure 3 illustrates the error
between FMM and HAFMM for distance fronts (equation
17). It is observed that the HAFMM has a much more
rounded circle and FMM produce flattening along +45°
axis (Beerentzen, 2001). Figure 4 shows an application for
a larger and more complex model (Marmousi), where we
can see the FMM can significantly change from HAFMM
if the wavefront passes for high velocity values. The
finite-difference accuracy increase allows to reduce the
accumulation error, however, it does not avoid the error
caused by the curvature near the source point. According
to Luo, S., Qian, J. (2012), a factored solution of the eikonal
equation allows mitigating this problem. In the context of
this work, we will not address this method.

Implementation

The key of the FMM algorithm is the separation of regions
already computed from regions in computing and from
regions to be computed, organized by causality criteria
in which establishes that the information propagates from
small to large 7 values.

Figure 5 illustrates the separation of these regions in a 10 x
10 grid by indentation: "ALIVE”, "CLOSE”, and "FAR”. In
the "ALIVE” region we have the points already computed,
where the source position, 7(zs,x) = 0, is the first point to
have this tag.

The points tagged "CLOSE” are in the computing process,
whose information is updated according to "ALIVE” points
in its neighborhood. This region is implemented in the
priority queue data structure (heap structure). The most
common implementation is the binary heap (Sethian, 1999)
because of its high computational efficiency. We use a non
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Figure 3: Distance circles for 10m, 20m and 30m radius.
The exact solution from equation 17 in solid cyan line, FMM
(top) and HAFMM (bottom) in black dashed dot line.

3000

Figure 4: FMM (dashed dot line) and HAFMM (solid line)
application in the Marmousi model. Source position at z =
Om and x = 4396m.

regular d-ary heap structure (d-ary is a generalization of
the binary heap where each parent node has d children).
The heap property (the son leaf has a greater value than
the father leaf min-heap) is kept by the causality constraint
of the upwind finite-difference scheme. Figure 6 shows the
heap structure for 5 x 5 grid model with source injection at
the center. Each tree layer sequences the update priority
as represented by different colors. In each sequence, the
grid points are updated by equations 13, 14, 15, 16, and
after that, each grid point is re-tagged as "ALIVE”. If there
are "FAR” tags in its neighborhood, we re-tag them as
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"CLOSE” to build the next tree layer. The tree is build by
storing an array with the size of the model minus one (we
do not need to store the source position), and each layer
is differentiated by pointing out the memory location of the
initial and final sample of the sub-array.

The region tagged with "FAR” indicates the points still
to be counted. These are allocated with maximum
machine floating point representation (infinity), so as,
to be disregarded in eikonal traveltime calculation. As
the wavefront moves forward, the "CLOSE” tags will be
updated for "ALIVE”, and "FAR” tags for "CLOSE” until
every grid point be "ALIVE” thus ending the modeling
process. Figure 7 shows all this process.

The algorithm

We make available the complete code in Fortran 90 of the
HAFMM in Figure 8. In this section, we are going to detail
the main points of the code.

Initialization:

+ Set the time in source position, T (izs, ixs) as zero.
« All other grid points set T (iz,ix) = 0.

+ Use Tag(izs,ixs) ="ALIVE” to freeze the source from
update.

+ Tag the closest grid points to the source as
Tag(iz,ix) ="CLOSE”.

+ Tag all other grid points as Tag(iz,ix) ="FAR”.
Modeling:

1. For each Tag(iz,ix) ="CLOSE” calcule the eikonal
distance (T).

2. Fix the new value in T(iz,ix) tagging it as
Tag(iz,ix) ="ALIVE” and if their neighbor is "FAR” set
as "CLOSE”.

3. Repeat 1 and 2 until there are no "CLOSE” tags.

Figure 5: FMM regions: "ALIVE” for computed (blue),
"CLOSE” for computing (green) and "FAR” to be computed

(gray).

Visit order Heap view as tree

Heap view as array

[0+ 1+ 12 uoraor 2 107 aa07 2z 2545 2545 2595 2545 2045 2545 25452545 3252 9252 9252 2252

Figure 6: Non regular d-ary heap structure. Tree and array
display.

2.545 2545 2545

1.707 2.545 2.545 1.707 1.707 2.545

1 2 2 1 1 2

1.707 2.545 2.545 1.707 1.707 2.545

2.545 2545 2545

2.545 3.252 3.252 2.545 2545 3.252

1.707 2.545 2.545 1.707 1.707 2.545

1 2 2 1 1 2

1.707 2.545 2.545 1.707 1.707 2.545

2.545 3.252 3.252 2.545 2545 3.252

Figure 7: Eikonal modeling in a 5 x 5 grid. From top left to
the bottom right. The algorithm initializes with the source
at position (3,3) with 7(z;,x;) = 0. Next tag the closest
point (green cross) as "CLOSE”. Update the next heap
layer and calculate 7 (red) and tag them as "ALIVE” (blue).
Find new closest point, re-flagged them from "FAR” (gray)
to "CLOSE” and update the new heap layer. Repeat until
only "ALIVE” points remain.

Conclusions

We briefly presented one of the most popular single-
pass methods called the Fast Marching Method. The
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2D isotropic eikonal equation was the focus as an initial
view of the method. The extension for high dimensions
is straightforward. We also show that some of the FMM
limitations may be handled by the High Accuracy version
of FMM (HAFMM). The method was coded and also tested
in the complex Marmousi velocity model. In addition, the
Fortran code of our implementation is available here.
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SUBROUTINE Isotropic Eikonal HAFMM(izs,ixs,nz,nx,dz,dx,slowness,Tmap,ierr)

IMPLICIT NONE

INTEGER(4),INTENT(IN) izs,ixs !Source position indexes
INTEGER(4), INTENT(IN) nz,nx Model size
REAL(4) , INTENT(IN) dz,dx !Sampling
REAL(4) , INTENT (IN) slowness(nz,nx) !Slowness
REAL(4) , INTENT (OUT) Tmap(nz,nx) !Travel time map
INTEGER(4),INTENT(OUT) ierr 'Error flag
REAL(8),ALLOCATABLE T(:,:) !Time
CHARACTER(LEN=1) ,ALLOCATABLE Tag(:,:) '6rid flags
INTEGER(4) iz,ix 16rid indexes
INTEGER(4) nclose, iclose !Close counter and index
INTEGER(4) min_iclose 'Min close point index
INTEGER(4) max_iclose 'Max close point index
REAL(8) a,b,c,delta !'Quadratic coffiecients
REAL(8) twoside !Twoside time update
REAL(8) onesidez !Oneside time update z
REAL(8) onesidex !Oneside time update x
REAL(8) pz,px IFD coeficient
REAL(8) Th,Tv !Neighbor time distance
TYPE heap_struc

INTEGER(4) hsiz !Z index

INTEGER(4) hsix !X index
END TYPE heap_struc
TYPE(heap_struc),ALLOCATABLE heap(:) !Data structure

ALLOCATE(T(-1:nz+2,-1:nx+2),Tag(-1:nz+2,-1:nx+2) ,heap(1:nz*nx-1),STAT=ierr)
IF(ierr/=0) RETURN

[ Initialization ---------

T( ) = HUGE(1.0e0)
Ta91 i) ='0" 'out
Tag(l:nz,1:nx) = 'F' !Far
Tag(izs,ixs) = 'A' !Alive
T(izs,ixs) = 0.0 !First time

| Tag the first close grid points

nclose =

IF(izs-1 >= 1 )THEN
Tag(izs-1,ixs) =
nclose = nclose + 1
heap(nclose)%hsiz = izs-1
heap(nclose)%hsix = ixs

END IF

IF(izs+1 <= nz)THEN
Tag(izs+1,ixs) = 'C'
nclose = nclose + 1
heap(nclose)%hsiz = izs+l
heap(nclose)%hsix = ixs

END IF

IF(ixs-1 >= 1 )THEN
Tag(izs,ixs-1) = 'C'
nclose = nclose + 1
heap(nclose)%hsiz = izs
heap(nclose)%hsix = ixs-1

END IF

IF(ixs+1 <= nx)THEN
Tag(izs,ixs+l) = 'C'
nclose = nclose + 1
heap(nclose)%hsiz = izs
heap(nclose)%hsix = ixs+l

END IF

max_iclose = nclose

min_iclose = 1

[ Modeling ---------
DO WHILE(min iclose <= max_iclose)
DO iclose = min iclose,max_iclose

iz = heap(iclose)shsiz
ix = heap(iclose)shsix

IForward or backward derivative
IF( T(iz+1,ix) < T(iz-1,ix) )THEN

pz = -1.0/dz

Tv = T(iz+l,ix)

IF(T(iz+2,1X) < T(iz+1,ix) )THEN

Tv = (4.6%T(iz+1,1x)-T(iz+2,1x))/3.6

pz = -3.0/(2.0%dz)

F

IFiTilz 2, 1XD < T(iz-1,ix) )THEN

= (4.0*T(iz-1, 1XD T(iz-2,ix))/3.0
Z = 3.0/(2.0%dz
IF

END IF
IF( T(iz,ix+1) < T(iz,ix-1) )THEN
px = -1.0/dx
Th = T(iz,ix+1)
IF(T(iz,1x+2) < T(iz,ix+1) )THEN
h o= (4.0%T(iz,1x+1)-T(iz,1x42))/3.6
px = -3.0/(2.0%dx)

END IF
ELSE
px = 1.0/dx

Th = T(iz,ix-1)
IF(T(iz,ix-2) < T(iz,ix-1) )THEN
Th = (4.0*T(iz,ix-1)-T(iz,ix-2))/3.0
pX = 3.0/(2.0%dx)
END IF
END IF

!Quadratic parameters
a = pz*H2 + pxti2

b = -2.0%(pz*pz*Tv + px*px*Th

© = (pz*Tv)**2 + (px*Th)**2 - slowness(iz,ix)*2
delta = b*2 - 4.0%a*c

!Isotropic Eikonal solution
twoside = HUGE(1.0d0)

IF(delta > 0.0) twoside = (- b+SORT1delta)D/12 o+a)
onesidez = Tv + slowness(iz,ix)/ABS(pz)

onesidex = Th + slowness(iz,1x)/ABS(px)

IUpdate the minimum time and tag as alive
T(iz,ix) = HIN1twoslde,onesldez,onesldexD
Tag(iz,ix) =
!Now if the nelghbohr of (iz,ix) is FAR set as close
IF(Tag(iz-1,ix) == 'F')THEN
Tag(iz-1,ix) = 'C'
nclose = nclose + 1
heap(nclose)%hsiz = iz-1
heap(nclose)%hsix = ix
END IF
IF(Tag(iz+1,ix) == F )THEN
Tag(iz+1,ix) =
nclose = nclose +1
heap(nclose)%hsiz = iz+1
heap(nclose)%hsix = ix
END IF
IF(Tag(iz,ix-1) == F )THEN
Tag(iz,ix-1) =
nclose = nclose +1
heap(nclose)%hsiz = iz
heap(nclose)%hsix = ix-1
END IF
IF(Tag(iz,ix+1) == 'F')THEN
Tag(iz,ix+l) = 'C'
nclose = nclose + 1
heap(nclose)%hsiz = iz
heap(nclose)%hsix = ix+1
END IF
END DO
min_iclose = max_iclose + 1
max_iclose = nclose
END DO

Tmap(l:nz,1:nx) = REAL(T(1:nz,1:nx),4) !Output

DEALLOCATE(T, Tag, heap, STAT=ierr)
IF(ierr/=0) RETURN

ierr=0
END SUBROUTINE Isotropic_Eikonal HAFMM

Figure 8: HAFMM Fortran 90 code.
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